# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
from abc import abstractmethod
# avoid circular reference
from ...quantization.fake_quant import FakeQuantize
from ...quantization.observer import Observer
from ...quantization.qconfig import QConfig
from ...quantization.utils import fake_quant_bias
from ...tensor import Tensor
from ..module import Module
[文档]class QATModule(Module):
    r"""Base class of quantized-float related :class:`~.Module`, basically for QAT and Calibration.
    
    Use :meth:`from_float_module` to generate a instance from float :class:`~.Module`.
    Or use :func:`~.quantize.quantize_qat` to do it recursively and automatically.
    
    Can also be converted to :class:`~.QuantizedModule` for deployment using
    :func:`~.quantize.quantize` further.
    """
    with_weight = True
    with_act = True
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.weight_observer = None  # type: Observer
        self.act_observer = None  # type: Observer
        self.weight_fake_quant = None  # type: FakeQuantize
        self.act_fake_quant = None  # type: FakeQuantize
    def __repr__(self):
        return "QAT." + super().__repr__()
[文档]    def set_qconfig(self, qconfig: QConfig):
        r"""Set quantization related configs with ``qconfig``, including
        observer and fake_quant for weight and activation.
        """
        def safe_call(func):
            return func() if func is not None else None
        if self.with_act:
            self.act_observer = safe_call(qconfig.act_observer)
            self.act_fake_quant = safe_call(qconfig.act_fake_quant)
        if self.with_weight:
            self.weight_observer = safe_call(qconfig.weight_observer)
            self.weight_fake_quant = safe_call(qconfig.weight_fake_quant) 
    def _enable_exec(self, with_module, func, enable):
        if not with_module or not func:
            return
        if enable:
            func.enable()
        else:
            func.disable()
[文档]    def set_fake_quant(self, enable):
        self._enable_exec(self.with_act, self.act_fake_quant, enable)
        self._enable_exec(self.with_weight, self.weight_fake_quant, enable) 
[文档]    def set_observer(self, enable):
        self._enable_exec(self.with_act, self.act_observer, enable)
        self._enable_exec(self.with_weight, self.weight_observer, enable) 
    def _apply_fakequant_with_observer(
        self, target: Tensor, fake_quant: FakeQuantize, observer: Observer
    ):
        # do observer
        if observer is None:
            oup = target
            qparams = None
        else:
            oup = observer(target)
            qparams = observer.get_qparams()
        # do fake quant
        if fake_quant is not None:
            oup = fake_quant(oup, qparams)
            # use qparams of fake_quant if have.
            if hasattr(fake_quant, "get_qparams"):
                qparams = fake_quant.get_qparams()
        # set to tensor qparams.
        if qparams is not None:
            oup.qparams.update(qparams)
        return oup
[文档]    def apply_quant_weight(self, target: Tensor):
        r"""Apply weight's observer and fake_quant from ``qconfig`` on ``target``."""
        return self._apply_fakequant_with_observer(
            target, self.weight_fake_quant, self.weight_observer
        ) 
[文档]    def apply_quant_activation(self, target: Tensor):
        r"""Apply weight's observer and fake_quant from ``qconfig`` on ``target``."""
        return self._apply_fakequant_with_observer(
            target, self.act_fake_quant, self.act_observer
        ) 
[文档]    def apply_quant_bias(self, target: Tensor, inp: Tensor, w_qat: Tensor):
        r"""Use :func:`~.fake_quant_bias` to process ``target``. Only valid when
        ``act_fake_quant`` and ``weight_fake_quant`` are both enabled.
        """
        # bias should have the same dtype as activation, so act_fake_quant can also
        # decide whether to do bias fakequant
        if (
            self.act_fake_quant
            and self.act_fake_quant.enabled
            and self.weight_fake_quant
            and self.weight_fake_quant.enabled
        ):
            b_qat = fake_quant_bias(target, inp, w_qat)
        else:
            b_qat = target
        return b_qat 
    def _get_method_result(
        self, method: str, fake_quant: FakeQuantize, observer: Observer
    ):
        if hasattr(fake_quant, method):
            return getattr(fake_quant, method)()
        elif hasattr(observer, method):
            return getattr(observer, method)()
        return None
[文档]    def get_weight_dtype(self):
        r"""Get weight's quantization dtype as the method from ``qconfig``."""
        return self._get_method_result(
            "get_quantized_dtype", self.weight_fake_quant, self.weight_observer
        ) 
[文档]    def get_activation_dtype(self):
        r"""Get activation's quantization dtype as the method from ``qconfig``."""
        return self._get_method_result(
            "get_quantized_dtype", self.act_fake_quant, self.act_observer
        ) 
[文档]    def get_weight_qparams(self):
        r"""Get weight's quantization parameters."""
        return self._get_method_result(
            "get_qparams", self.weight_fake_quant, self.weight_observer
        ) 
[文档]    def get_activation_qparams(self):
        r"""Get activation's quantization parameters."""
        return self._get_method_result(
            "get_qparams", self.act_fake_quant, self.act_observer
        ) 
[文档]    @classmethod
    @abstractmethod
    def from_float_module(cls, float_module: Module):
        r"""Return a :class:`~.QATModule` instance converted from
        a float :class:`~.Module` instance.
        """