megengine.functional.loss 源代码

# -*- coding: utf-8 -*-
import functools

import numpy as np

from ..core.tensor.array_method import _reduce
from ..tensor import Tensor
from .elemwise import abs, equal, log, logaddexp, maximum
from .nn import indexing_one_hot, logsigmoid, logsumexp, relu
from .tensor import broadcast_to, cumsum, linspace, ones, where, zeros

__all__ = [
    "l1_loss",
    "square_loss",
    "cross_entropy",
    "binary_cross_entropy",
    "hinge_loss",
    "ctc_loss",
]


def _reduce_output(loss_fn):
    r"""Wrapper to apply canonical reductions to loss outputs."""

    @functools.wraps(loss_fn)
    def reduced_loss_fn(*args, reduction="mean", **kwargs):
        loss = loss_fn(*args, **kwargs)
        if reduction == "none":
            return loss
        elif reduction in ("mean", "sum"):
            return _reduce(reduction)(loss)
        else:
            raise ValueError("{} is not a valid value for reduction".format(reduction))

    return reduced_loss_fn


[文档]@_reduce_output def l1_loss(pred: Tensor, label: Tensor, reduction: str = "mean") -> Tensor: r"""Calculates the mean absolute error (MAE) between each element in the pred :math:`x` and label :math:`y`. The mean absolute error can be described as: .. math:: \ell(x,y) = mean\left(L \right) where .. math:: L = \{l_1,\dots,l_N\}, \quad l_n = \left| x_n - y_n \right|, :math:`x` and :math:`y` are tensors of arbitrary shapes with a total of :math:`N` elements each. :math:`N` is the batch size. Args: pred: predicted result from model. label: ground truth to compare. reduction: the reduction to apply to the output: 'none' | 'mean' | 'sum'. Returns: loss value. Shape: * ``pred``: :math:`(N, *)` where :math:`*` means any number of additional dimensions. * ``label``: :math:`(N, *)`. Same shape as ``pred``. Examples: >>> pred = Tensor([3, 3, 3, 3]) >>> label = Tensor([2, 8, 6, 1]) >>> F.nn.l1_loss(pred, label) Tensor(2.75, device=xpux:0) >>> F.nn.l1_loss(pred, label, reduction="none") Tensor([1 5 3 2], dtype=int32, device=xpux:0) >>> F.nn.l1_loss(pred, label, reduction="sum") Tensor(11, dtype=int32, device=xpux:0) """ diff = pred - label return abs(diff)
[文档]@_reduce_output def square_loss(pred: Tensor, label: Tensor, reduction: str = "mean") -> Tensor: r"""Calculates the mean squared error (squared L2 norm) between each element in the pred :math:`x` and label :math:`y`. The mean squared error can be described as: .. math:: \ell(x, y) = mean\left( L \right) where .. math:: L = \{l_1,\dots,l_N\}, \quad l_n = \left( x_n - y_n \right)^2, :math:`x` and :math:`y` are tensors of arbitrary shapes with a total of :math:`N` elements each. :math:`N` is the batch size. Args: pred: predicted result from model. label: ground truth to compare. reduction: the reduction to apply to the output: 'none' | 'mean' | 'sum'. Returns: loss value. Shape: * ``pred``: :math:`(N, *)` where :math:`*` means any number of additional dimensions. * ``label``: :math:`(N, *)`. Same shape as ``pred``. Examples: >>> pred = Tensor([3, 3, 3, 3]) >>> label = Tensor([2, 8, 6, 1]) >>> F.nn.square_loss(pred, label) Tensor(9.75, device=xpux:0) >>> F.nn.square_loss(pred, label, reduction="none") Tensor([ 1. 25. 9. 4.], device=xpux:0) >>> F.nn.square_loss(pred, label, reduction="sum") Tensor(39.0, device=xpux:0) """ diff = pred - label return diff ** 2
[文档]@_reduce_output def cross_entropy( pred: Tensor, label: Tensor, axis: int = 1, with_logits: bool = True, label_smooth: float = 0, reduction: str = "mean", ) -> Tensor: r"""Computes the multi-class cross entropy loss (using logits by default). When using label smoothing, the label distribution is as follows: .. math:: y^{LS}_{k}=y_{k}\left(1-\alpha\right)+\alpha/K where :math:`y^{LS}` and :math:`y` are new label distribution and origin label distribution respectively. k is the index of label distribution. :math:`\alpha` is ``label_smooth`` and :math:`K` is the number of classes. Args: pred: input tensor representing the predicted value. label: input tensor representing the classification label. axis: an axis along which softmax will be applied. Default: 1 with_logits: whether to apply softmax first. Default: True label_smooth: a label smoothing of parameter that can re-distribute target distribution. Default: 0 reduction: the reduction to apply to the output: 'none' | 'mean' | 'sum'. Returns: loss value. Examples: By default(``with_logitis`` is True), ``pred`` is assumed to be logits, class probabilities are given by softmax. It has better numerical stability compared with sequential calls to :func:`~.softmax` and :func:`~.cross_entropy`. >>> pred = Tensor([[0., 1.], [0.3, 0.7], [0.7, 0.3]]) >>> label = Tensor([1., 1., 1.]) >>> F.nn.cross_entropy(pred, label) # doctest: +SKIP Tensor(0.57976407, device=xpux:0) >>> F.nn.cross_entropy(pred, label, reduction="none") Tensor([0.3133 0.513 0.913 ], device=xpux:0) If the ``pred`` value has been probabilities, set ``with_logits`` to False: >>> pred = Tensor([[0., 1.], [0.3, 0.7], [0.7, 0.3]]) >>> label = Tensor([1., 1., 1.]) >>> F.nn.cross_entropy(pred, label, with_logits=False) # doctest: +SKIP Tensor(0.5202159, device=xpux:0) >>> F.nn.cross_entropy(pred, label, with_logits=False, reduction="none") Tensor([0. 0.3567 1.204 ], device=xpux:0) """ n0 = pred.ndim n1 = label.ndim assert n0 == n1 + 1, ( "target ndim must be one less than input ndim; input_ndim={} " "target_ndim={}".format(n0, n1) ) ls = label_smooth if with_logits: logZ = logsumexp(pred, axis) primary_term = indexing_one_hot(pred, label, axis) else: logZ = 0 primary_term = log(indexing_one_hot(pred, label, axis)) if ls is None or type(ls) in (int, float) and ls == 0: return logZ - primary_term if not with_logits: pred = log(pred) return logZ - ls * pred.mean(axis) - (1 - ls) * primary_term
[文档]@_reduce_output def binary_cross_entropy( pred: Tensor, label: Tensor, with_logits: bool = True, reduction: str = "mean", ) -> Tensor: r"""Computes the binary cross entropy loss (using logits by default). Args: pred: `(N, *)`, where `*` means any number of additional dimensions. label: `(N, *)`, same shape as the input. with_logits: bool, whether to apply sigmoid first. Default: True reduction: the reduction to apply to the output: 'none' | 'mean' | 'sum'. Returns: loss value. Examples: By default(``with_logitis`` is True), ``pred`` is assumed to be logits, class probabilities are given by softmax. It has better numerical stability compared with sequential calls to :func:`~.sigmoid` and :func:`~.binary_cross_entropy`. >>> pred = Tensor([0.9, 0.7, 0.3]) >>> label = Tensor([1., 1., 1.]) >>> F.nn.binary_cross_entropy(pred, label) Tensor(0.4328984, device=xpux:0) >>> F.nn.binary_cross_entropy(pred, label, reduction="none") Tensor([0.3412 0.4032 0.5544], device=xpux:0) If the ``pred`` value has been probabilities, set ``with_logits`` to False: >>> pred = Tensor([0.9, 0.7, 0.3]) >>> label = Tensor([1., 1., 1.]) >>> F.nn.binary_cross_entropy(pred, label, with_logits=False) Tensor(0.5553361, device=xpux:0) >>> F.nn.binary_cross_entropy(pred, label, with_logits=False, reduction="none") Tensor([0.1054 0.3567 1.204 ], device=xpux:0) """ if not with_logits: return -(label * log(pred) + (1 - label) * log(1 - pred)) # logsigmoid(pred) and logsigmoid(-pred) has common sub-expression # hopefully the backend would optimize this return -(label * logsigmoid(pred) + (1 - label) * logsigmoid(-pred))
[文档]@_reduce_output def hinge_loss( pred: Tensor, label: Tensor, norm: str = "L1", reduction: str = "mean" ) -> Tensor: r"""Caculates the hinge loss which is often used in SVM. The hinge loss can be described as: .. math:: loss(x, y) = \frac{1}{N}\sum_i\sum_j(max(0, 1 - x_{ij}*y_{ij})) Args: pred: input tensor representing the predicted probability, shape is `(N, C)`. label: input tensor representing the binary classification label, shape is `(N, C)`. norm: specify the norm to caculate the loss, should be "L1" or "L2". reduction: the reduction to apply to the output: 'none' | 'mean' | 'sum'. Default: 'mean' Returns: loss value. Examples: >>> pred = Tensor([[0.5, -0.5, 0.1], [-0.6, 0.7, 0.8]]) >>> label = Tensor([[1, -1, -1], [-1, 1, 1]]) >>> F.nn.hinge_loss(pred, label) Tensor(1.5, device=xpux:0) >>> F.nn.hinge_loss(pred, label, reduction="none") Tensor([2.1 0.9], device=xpux:0) >>> F.nn.hinge_loss(pred, label, reduction="sum") Tensor(3.0, device=xpux:0) """ norm = norm.upper() assert norm in ["L1", "L2"], "norm must be L1 or L2" # Converts binary labels to -1/1 labels. loss = relu(1.0 - pred * label) if norm == "L1": return loss.sum(axis=1) else: return (loss ** 2).sum(axis=1)
def _gen_repeat_idx(inp: Tensor): idx = cumsum(inp, axis=0) ret = zeros(inp.sum(), dtype="int32") ret[idx[:-1]] = 1 return cumsum(ret, axis=0) def _gen_tile_idx(inp: Tensor): idx = cumsum(inp, axis=0) ret = ones(inp.sum(), dtype="int32") ret[idx[:-1]] = -(inp - 1)[:-1] return cumsum(ret, axis=0) - 1 def _expand_label(label: Tensor, label_lengths: Tensor, blank: int) -> Tensor: N = label_lengths.shape[0] if len(label.shape) == 1: L = label_lengths.max() unpack_label = zeros((N, L), dtype="int32") + blank idx_0 = _gen_repeat_idx(label_lengths) idx_1 = _gen_tile_idx(label_lengths) unpack_label[idx_0, idx_1] = label label = unpack_label L = label.shape[1] ex_label = zeros((N, L * 2 + 1), dtype="int32") + blank ex_label[:, 1::2] = label return ex_label def _safelog(x: Tensor) -> Tensor: eps = np.finfo(x.dtype).tiny return log(maximum(x, eps))
[文档]def ctc_loss( pred: Tensor, pred_lengths: Tensor, label: Tensor, label_lengths: Tensor, blank: int = 0, reduction: str = "mean", ) -> Tensor: r"""The Connectionist Temporal Classification loss. Args: pred: The probabilities of the output, shape is (T, N, C) , where T=input length, N=batch size, and C=number of classes (including blank). pred_lengths: number of time steps for each sequence in ``pred``, shape is (N, ) label: groundtruth labels, containing the indices of groundtruth symbols for each sequence at each output time step, and the blank symbol should not be included. shape is (N, S) or (sum(label_lengths)). label_lengths: number of time steps for each sequence in the groundtruth, shape is (N, ) blank: the blank symbol number, default 0 reduction: the reduction to apply to the output: 'none' | 'mean' | 'sum'. Default: 'mean' Returns: loss value. Examples: >>> pred = Tensor([[[0.0614, 0.9386],[0.8812, 0.1188]],[[0.699, 0.301 ],[0.2572, 0.7428]]]) >>> pred_lengths = Tensor([2, 2]) >>> label = Tensor([1, 1]) >>> label_lengths = Tensor([1, 1]) >>> F.nn.ctc_loss(pred, pred_lengths, label, label_lengths) Tensor(0.1504417, device=xpux:0) """ T, N, C = pred.shape assert ( pred_lengths.size == N ), "pred_lengths must be equal to batch_size {}, but got {}".format( N, pred_lengths.size ) assert ( label_lengths.size == N ), "label_lengths must be euqal to batch_size {}, but got {}".format( N, label_lengths.size ) assert ( blank >= 0 and blank < C ), "blank must be in label range [0, {}), but got {}".format(C, blank) assert ( pred_lengths.min() > 0 and pred_lengths.max() <= T ), "pred_lengths must be in range ({}, {}], bug got min {}, max {}".format( 0, T, pred_lengths.min(), pred_lengths.max() ) if label.ndim == 1: # concatenated label assert label_lengths.min() > 0, "label lengths muse be positive" assert ( label.size == label_lengths.sum() ), "label size must be equal to sum(label_lengths)" else: N, S = label.shape assert ( label_lengths.min() > 0 and label_lengths.max() <= S ), "label_lengths must be in range ({}, {}], bug got min {}, max {}".format( 0, S, label_lengths.min(), label_lengths.max() ) label = _expand_label(label, label_lengths, blank) label_mask = label[:, 2:] != label[:, :-2] L = label.shape[1] pred = pred.transpose(1, 0, 2) # (T, N, C) -> (N, T, C) batch_idx = linspace(0, N - 1, N).astype("int32").reshape(-1) batch_idx_NL = broadcast_to(batch_idx.reshape(N, 1), (N, L)).reshape(-1) match_pred = pred[batch_idx_NL, :, label.reshape(-1)].reshape( N, L, -1 ) # (N, T, C) -> (N, L, T) log_alpha = zeros((N, L), dtype="float32") log_alpha[:, :2] = match_pred[:, :2, 0] log_alpha = _safelog(log_alpha) ret = -logaddexp( log_alpha[batch_idx, label_lengths * 2], log_alpha[batch_idx, label_lengths * 2 - 1], ) * equal(pred_lengths - 1, 0) for t in range(1, T): la2 = log_alpha[:, :-2] log_alpha[:, 1:] = logaddexp(log_alpha[:, 1:], log_alpha[:, :-1]) log_alpha[:, 2:] = ( log_alpha[:, 2:] * (1 - label_mask) + logaddexp(log_alpha[:, 2:], la2) * label_mask ) log_alpha += _safelog(match_pred[:, :, t]) ret_t = -logaddexp( log_alpha[batch_idx, label_lengths * 2], log_alpha[batch_idx, label_lengths * 2 - 1], ) ret += ret_t * equal(pred_lengths - 1, t) if reduction == "mean": return (ret / label_lengths).mean() elif reduction == "sum": return ret.sum() elif reduction == "none": return ret else: raise ValueError("{} is not a valid value for reduction".format(reduction))